Flying
Flying | |
Properties | |
Hex | 0x10880899 |
Action Flags | air, diving, attacking, swimming/flying |
Action Group | Airborne |
ID | 0x099 |
Transitions | |
Into | Airborner cancels: Water Plunge, Squished, Vertical Wind (theoretically), (Technically, because of the flying triple jump code): Double Jump Land, Lava Boost (theoretically), non cancel: Ground Pound, Freefall, Dive Slide, Backwards Air Kb, Lava Boost (again) (theoretically) |
Out of | Shot From Cannon, Flying Triple Jump, when spawning in some levels like Tower of the Wing Cap |
Other | |
Animation | 0x5B fly from cannon, 0xCF forwards spinning flip, 0x29 wing cap fly |
Flying is an action that can occurs when Mario triple jumps or does a cannon shot while wearing the wing cap.
Entering flying
- Cannon shot: when y vel < 0 (and Mario does not cancel) (Action argument: 0)
- Flying Triple Jump: when y vel < 4 (and Mario does not cancel, dive, or ground pound) (Action argument: 1)
- Spawning in, e.g, Tower of the Wing Cap: (Action argument: 2)
Behavior
As with all airborne actions, a variety of "cancels" are checked prior to actually performing any airborne action. See Jump#Airborne cancels.
Then:[1]
- If Z is pressed
- If Mario's camera mode is CAMERA_MODE_BEHIND_MARIO, set_camera_mode to m->area->camera->defMode
- Ground Pound
- If Mario is not wearing the wing cap
- If Mario's camera mode is CAMERA_MODE_BEHIND_MARIO, set_camera_mode to m->area->camera->defMode
- Freefall
- If Mario's camera mode is not CAMERA_MODE_BEHIND_MARIO, set_camera_mode to CAMERA_MODE_BEHIND_MARIO
- If the action state is 0
- If the action argument is 0 (was shot from cannon), set Mario's animation to MARIO_ANIM_FLY_FROM_CANNON, else set Mario's animation to MARIO_ANIM_FORWARD_SPINNING_FLIP
- If the animation finished,
- If the action argument is 2 (spawned in), load_level_init_text and set action argument to 1
- Set Mario's animation to MARIO_ANIM_WING_CAP_FLY
- Set action state to 1
- Call
update_flying
- switch Movement_steps#Perform_Air_Step: (Note: if there are no floor/wall/ceiling/oob interactions this just adds vel[0,1,2] to pos[0,1,2].)
- air step none:
- Update graphics (camera) angle to be behind Mario
- Set action timer to 0
- air step land:
- Set action to Dive Slide
- Set animation to MARIO_ANIM_DIVE
- Set animation frame to 7
- Set facing angle (x) to 0
- Set camera mode to m->area->camera->defMode
- air step hit wall:
- todo
- if wall is not null, stuff, Backwards Air Kb
- else, stuff (but no knockback, this is probably out of bounds)
- air step hit lava wall:
- stop holding, stop riding, Lava Boost
- air step none:
- finally, play the flying sound (adjust sound for speed)
Notice that there is no code handling air steps for ledge grabbing or hanging on a ceiling, so such transitions are impossible.
update_flying
Casually, tilt the joystick left to move left, right to move right, up to move down, down to move up.
I am too lazy to describe the exact details of update_flying
, so here is the code
void update_flying(struct MarioState *m) {
UNUSED u8 filler[4];
update_flying_pitch(m);
update_flying_yaw(m);
m->forwardVel -= 2.0f * ((f32) m->faceAngle[0] / 0x4000) + 0.1f;
m->forwardVel -= 0.5f * (1.0f - coss(m->angleVel[1]));
if (m->forwardVel < 0.0f) {
m->forwardVel = 0.0f;
}
if (m->forwardVel > 16.0f) {
m->faceAngle[0] += (m->forwardVel - 32.0f) * 6.0f;
} else if (m->forwardVel > 4.0f) {
m->faceAngle[0] += (m->forwardVel - 32.0f) * 10.0f;
} else {
m->faceAngle[0] -= 0x400;
}
m->faceAngle[0] += m->angleVel[0];
if (m->faceAngle[0] > 0x2AAA) {
m->faceAngle[0] = 0x2AAA;
}
if (m->faceAngle[0] < -0x2AAA) {
m->faceAngle[0] = -0x2AAA;
}
m->vel[0] = m->forwardVel * coss(m->faceAngle[0]) * sins(m->faceAngle[1]);
m->vel[1] = m->forwardVel * sins(m->faceAngle[0]);
m->vel[2] = m->forwardVel * coss(m->faceAngle[0]) * coss(m->faceAngle[1]);
m->slideVelX = m->vel[0];
m->slideVelZ = m->vel[2];
}
Key takeaways:
- Pitching to move up happens faster with higher forward velocity.
- The difference between 4 and 5 speed, and 16 and 17 speed is especially large.
- At the same time, forward velocity is based on pitch. (But it is also based on:)
- There is a base 0.1 forwardVel speed loss
- There is anywhere from 0 to 0.5 further speed loss - more speed is lost the higher the yaw velocity is (ie the more Mario turns).
- Pitch has a minimum and maximum and cannot overflow with standard speeds.
- More below the tables
- TODO: I heard moving down then up can be faster then just the direct line. Explain big picture movements, what happens in a practical example.
<=4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | ... | 31 | 32 | 33 |
-1024 | -270 | -260 | -250 | -240 | -230 | -220 | -210 | -200 | -190 | -180 | -170 | -160 | -90 | -84 | -76 | ... | -6 | 0 | 6 |
- TODO: I heard moving down then up can be faster then just the direct line. Explain big picture movements, what happens in a practical example.
Although I posted the code instead of the detailed psuedocode, here's some less detailed psuedocode anyways:
Although I was too lazy, I typed a less detailed pseudocode anyways:
- Joystick inputs affect (pitch,yaw) velocity.
- Yaw velocity affects yaw, roll, and forward velocity.
- Pitch affects forward velocity.
- Forward velocity becomes at least 0
- Forward velocity affects pitch (see above table)
- Pitch velocity affects pitch.
- Pitch is clamped to be inside [-0x2AAA, 0x2AAA]
- x,y,z velocity is more or less directly exactly correspondent to forward velocity, pitch, and yaw.
- xz sliding velocity updated to correspond
Here are some tables summarizing the approach_s32
, update_flying_pitch
, and update_flying_yaw
functions.
joystick is down (move up) | joystick is up (move down) | joystick is neutral | |
---|---|---|---|
negative pitch velocity | add 64 vel, cap at 32 | approach (at most 64 up or 32 down) | approach 0 (by at most 64) |
positive pitch velocity | approach (at most 32 up or 64 down) | subtract 64 vel, cap at -32 | approach 0 (by at most 64) |
zero pitch velocity | approach (at most 32 up or 64 down) | approach (at most 64 up or 32 down) | approach 0 (by at most 64) |
joystick is left | joystick is right | joystick is neutral | |
---|---|---|---|
negative yaw velocity | add 64 vel, cap at 16 | approach (at most 32 up or 16 down) | approach 0 (by at most 64) |
positive yaw velocity | approach (at most 16 up or 32 down) | subtract 64 vel, cap at -16 | approach 0 (by at most 64) |
zero yaw velocity | approach (at most 16 up or 32 down) | approach (at most 32 up or 16 down) | approach 0 (by at most 64) |
Key takeaways:
- Many joystick positions are equivalent.
- One cannot change velocity by more than 64 (ignoring the effects of speed)
- Holding joystick x=0 or y=0 will approach the corresponding 0 by at most 64.
- In contrast, holding the opposite direction changes the angle by 32 (yaw) or 64 (pitch), unconditionally
- In further contrast, holding less of the same direction changes the angle by 32 (yaw) or 64 (pitch)
- In even furthest contrast, holding more of the same direction changes the angle by 16 (yaw) or 32 (pitch)
- So it might be faster to say, modify pitch:as such: -56 to -4 to 60 instead of -56 to 8 to 40. Notice the slightly under zero instead of slightly over zero.
After that, update_flying_yaw does:
- Add yaw velocity to yaw
- Set roll to yaw times negative twenty (-20)
Note that turning left = positive yaw (up = positive pitch).[2]
/**
* Return the value 'current' after it tries to approach target, going up at
* most 'inc' and going down at most 'dec'.
*/
s32 approach_s32(s32 current, s32 target, s32 inc, s32 dec) {
//! If target is close to the max or min s32, then it's possible to overflow
// past it without stopping.
if (current < target) {
current += inc;
if (current > target) {
current = target;
}
} else {
current -= dec;
if (current < target) {
current = target;
}
}
return current;
}
void update_flying_yaw(struct MarioState *m) {
s16 targetYawVel = -(s16)(m->controller->stickX * (m->forwardVel / 4.0f));
if (targetYawVel > 0) {
if (m->angleVel[1] < 0) {
m->angleVel[1] += 0x40;
if (m->angleVel[1] > 0x10) {
m->angleVel[1] = 0x10;
}
} else {
m->angleVel[1] = approach_s32(m->angleVel[1], targetYawVel, 0x10, 0x20);
}
} else if (targetYawVel < 0) {
if (m->angleVel[1] > 0) {
m->angleVel[1] -= 0x40;
if (m->angleVel[1] < -0x10) {
m->angleVel[1] = -0x10;
}
} else {
m->angleVel[1] = approach_s32(m->angleVel[1], targetYawVel, 0x20, 0x10);
}
} else {
m->angleVel[1] = approach_s32(m->angleVel[1], 0, 0x40, 0x40);
}
m->faceAngle[1] += m->angleVel[1];
m->faceAngle[2] = 20 * -m->angleVel[1];
}
void update_flying_pitch(struct MarioState *m) {
s16 targetPitchVel = -(s16)(m->controller->stickY * (m->forwardVel / 5.0f));
if (targetPitchVel > 0) {
if (m->angleVel[0] < 0) {
m->angleVel[0] += 0x40;
if (m->angleVel[0] > 0x20) {
m->angleVel[0] = 0x20;
}
} else {
m->angleVel[0] = approach_s32(m->angleVel[0], targetPitchVel, 0x20, 0x40);
}
} else if (targetPitchVel < 0) {
if (m->angleVel[0] > 0) {
m->angleVel[0] -= 0x40;
if (m->angleVel[0] < -0x20) {
m->angleVel[0] = -0x20;
}
} else {
m->angleVel[0] = approach_s32(m->angleVel[0], targetPitchVel, 0x40, 0x20);
}
} else {
m->angleVel[0] = approach_s32(m->angleVel[0], 0, 0x40, 0x40);
}
}